

Optimize Your SQL Database Tips for Peak Performance

Darius Liktorius

Senior Director, Global Data Services

PricewaterhouseCoopers (PwC)

SQL Clinic

Get your SQL questions answered here by our SQL experts during our breaks!

(Across from Registration)

501 Legion Charitable Donation For Housing Thank the 501 Legion for Supporting Our Event! JSSUG Will Match Donations up to \$500

Donation Bucket on Registration Table

Our vision for Ft. Barnabas is to one day be a bastion of hope and stability in guiding veterans on their path to stability. Fort Barnabas will be constructed as a mixture of portable tiny homes, or "Barnabas Bungalows," and brick-and-mortar condo-style family homes. https://operationbarnabas.com/get-involved/

Session Evaluations

Your feedback is important to us!

Please fill out and hand to speaker after the session!

Event Evaluation

Fill out event evaluation card in your bag and visit all sponsors to be entered to win an Xbox Series X – (Must be present to win)

Data Community Summit

See you in Seattle! Get \$150 off a 3-day ticket! Use code: SQLSATJACKS150 Register now!

passdatacommunitysummit.com

Darius Liktorius

Sr. Dir., Global Data Services PwC

Liktorius.com

@DLiktorius

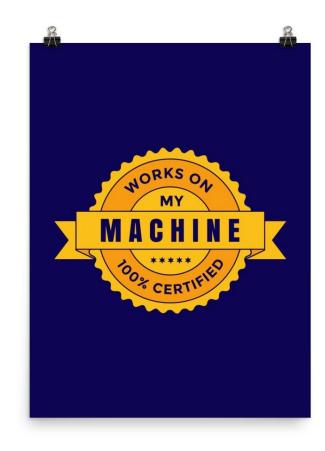
linkedin.com/in/DariusLiktorius

- 25+ years with SQL Server
- Specializing in scalability, availability and performance
- App, Data & Solutions Arch.

Agenda

- Overview
- Application Usage Patterns
- Infrastructure & Storage
- Partitioning, Indexes & Statistics
- Replicas & Sharding
- Q & A

Overview


Overview – What's Covered

- We are covering:
 - Critically Important Design & Deployment Decisions
 - Essential Tools & Maintenance Operations
- We are <u>not</u> covering:
 - Troubleshooting & Optimizing Queries enable Query Store!
 - Usage of Diagnostics Tools

Overview – Stereotypes

- Application Developers:
 - Are <u>not</u> bad people!
 - Leverage effort-reducing libraries
 - Do not appreciate impacts against DB
- DBAs, DevOps & Architects:
 - Rightfully question application code
 - Sometimes make critically important design oversights

Tools to Consider

- Database Engine Tuning Advisor
- Azure SQL Database Automatic Tuning
- Third-Party:
 - SQL Sentry by SentryOne (Solarwinds)
 - Quest Foglight on SQL
 - Idera SQL Diagnostic Manager
 - SQL Grease

Application Usage Patterns

Application Usage Patterns

- Over-normalization
- Object-Relational Mapping (ORM) Libraries
 - Lazy-loading, Loops, Unnecessary Joins
 - Evaluate actual queries
 - Use DTOs
- Connection Pooling & Disposal

Application Usage Patterns – cont'd.

- Areas of contention:
 - Active Tables
 - Table "Hot" Spots
- Cache, Cache and Cache some more!
 - Redis
 - Memcached

Azure SQL DB – Transient Faults (EF Core/EF5+)

```
// Startup.cs from any ASP.NET Core Web API
public class Startup
   // Other code ...
   public IServiceProvider ConfigureServices(IServiceCollection services)
        // ...
        services.AddDbContext<CatalogContext>(options =>
            options.UseSqlServer(Configuration["ConnectionString"],
            sqlServerOptionsAction: sqlOptions =>
                sqlOptions.EnableRetryOnFailure(
                maxRetryCount: 10,
                maxRetryDelay: TimeSpan.FromSeconds(30),
                errorNumbersToAdd: null);
           });
        });
//...
```


Infrastructure

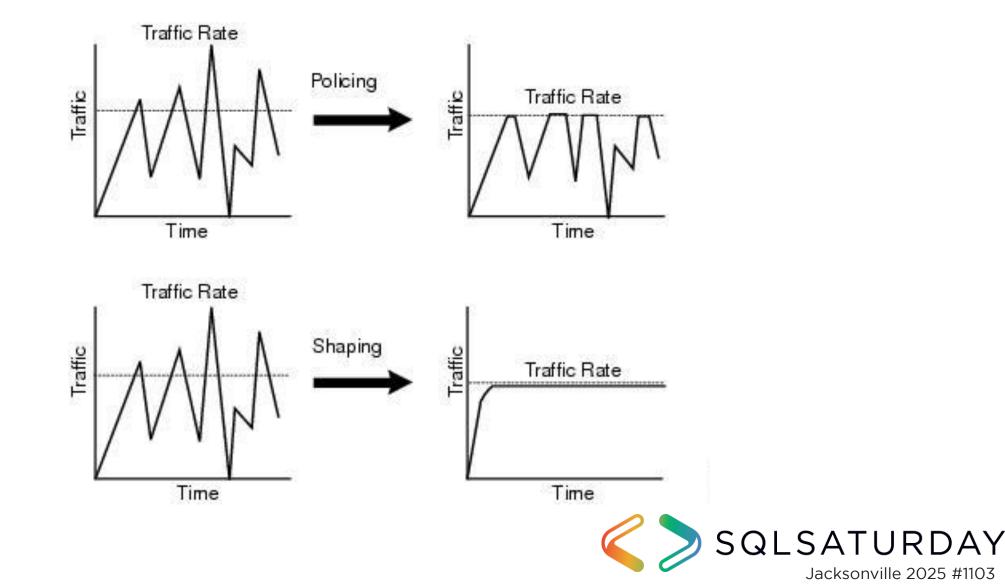
Infrastructure – Self Managed

- Virtual Machine / Bare Metal:
 - Sufficient CPU allocation for the load T.B.D.
 - Memory (RAM) to host frequently used tables, active partitions and indexes
 - Storage RAID Level:
 - 1 (SSD) or 10 (HDD) for Transaction Log and Tempdb
 - 5, 6, 50, 60, or 10 for Database

Infrastructure – Cloud Hosted

- Tiers, SKUs:
 - Affect CPU, Memory (e.g., E-Series), Disk (e.g., ephemeral)
 - SSD vs HDD & Throughput
 - Block vs Blob storage in Cloud (more later)
- Networking:
 - VNET integration, Service Endpoints, Private Link, etc.

Storage



Storage for SQL Server

- Why should I care?
- SQL Server is sensitive to disk latency
 - Optimal latency for database: **<= 10ms**
 - Optimal latency for transaction log: **<= 2ms**

Network Throttling - Policing vs Shaping

Azure Storage Architecture

Dis	ks

Persistent disks for Azure laaS VMs

Premium Storage Disks option: SSD based, high IOPS, low latency

Files

Fully Managed File Shares in the Cloud

SMB and REST access

"Lift and shift" legacy apps

Blobs

Highly scalable, REST based cloud object store

Block Blobs: Sequential file I/O

Page Blobs: Randomwrite pattern data

Hybrid

Azure File Sync

StorSimple

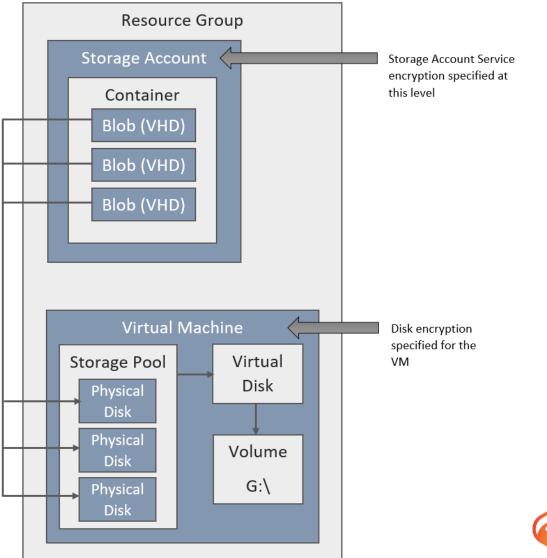
Built on a <u>unified</u> Distributed Storage System Durability, Encryption at Rest, Consistent Replication, Fault Tolerance, Load-Balancing

Storage Comparison

Azure

- **Shared** Infrastructure
- Throttling choppy (Network Policing)
- Ethernet Storage (iSCSI)
- SQL Database & M.I. in
 Standard/GP Tiers –
 overcome with BC & HS
- Multiple HA Options
- VMs: Use Storage Pools #SQLSatOrlando

AWS


- Dedicated Infrastructure
- Throttling **smooth** (*Traffic Shaping*)
- True Block Storage
- Also used by Amazon RDS
- *Limited HA* Local AZ only *Like Azure LRS*

GCP

- Dedicated Infrastructure
- Throttling **smooth** (*Traffic Shaping*)
- True **Block Storage**
- Also used by Cloud SQL
 - **Multiple HA** Local AZ, Multi-AZ, Cross-Region

Azure Storage – Windows Storage Pools

Courtesy: Melissa Coates, MVP -SQLChick.com

Extreme Performance Storage Comparison

Azure

Ultra Disk

- **<u>Dedicated</u>** Infrastructure
- **<u>Block</u>** Storage (for VMs)
- Fast Up to 160k IOPS or 4,000 MB/sec
- Throttling VM and Disk but
 <u>smooth</u> (Shaping)
- Redundant Storage (LRS and ZRS) – Varies by Region

AWS

io2 Block Express

- Dedicated Infrastructure
- Block Storage
- Fastest Up to 256k IOPS or 7,500 MB/sec
- Throttling VM and Disk Smooth (Shaping)
- Local-Zone Redundancy only

GCP

Extreme Persistent Disks

- Dedicated Infrastructure
- Block Storage
- Slowest Up to 120k IOPS or 2,200 MB/sec
- Throttling Smooth
- Local-Zone Redundancy only

File Placement

File Placement – for VM / On-Premises

- Separate Log & Data File Locations
- Utilize File Groups (FG's)
- Split Tables and Non-Clustered Indexes into separate FG's
- Consider dedicated FG for very large tables

Local SSD Storage for Tempdb in Cloud

- **Ephemeral** (Transitory) Not persistent
- Azure, AWS and GCP all have Local SSD options
- USE THEM!

Tempdb

- Used in numerous ways:
 - Temporary tables, cursors, stored procedures, & other internal objects
- Optimize storage and pre-allocate
- Consider load requirements in multi-database instance

Partitioning, Indexes & Statistics

Partitioning

- **Physically separates data** based on criteria (e.g., date ranges)
- **Reduces or eliminates** cross-query data page **locking**
- Allows for **efficient** management & **deprecation of data**
- Marginal performance improvement on most queries requires larger quantity of partitions

Indexes

- **Clustering approach:** consider de-coupling Primary Key from Clustered Column(s)
- Fill Factors: Unless contiguously incrementing values (e.g., Identity Columns), <u>always</u> specify a Fill Factor < 100
- Maintenance: Ensure you are regularly (nightly, intra-day) reorganizing and/or rebuilding your indexes!
 Don't forget about statistics!

Table Statistics "STATS"

- **Critically Important** has direct impact on index selectivity
- **Rate of Change** Will not update unless >=30% of delta
- Best Practices
 - Keep **auto-update enabled**, <u>but run nightly</u>
 - Consider **specific tables** for one-off updates
 - Utilize **async** update (e.g., large tables w/ frequent, big updates)

Replicas & Sharding

Replicas

- Provide High Availability & Scalability
- Enabled via Availability Groups & DAGs
- Azure SQL Database Hyperscale adds Named Replicas
- Synchronous vs Asynchronous
- **Readable** connection string: "applicationIntent=readonly"

Sharding

- Divide a data store into a set of horizontal partitions or shards.
 This can improve scalability when storing and accessing large volumes of data.
- Azure SQL Database Elastic Database Client Library

Q & A

Session evaluation Your feedback is important to us

Please fill out your session evaluation and hand to speaker!

Thank you

Presentation Landing Page & Resources:

Liktorius.com/go/SQLSAT1103

Darius Liktorius

@DLiktorius

linkedin.com/in/DariusLiktorius

